Riassunto analitico
Predire le prestazioni dei sistemi di raffreddamento di vetture ad alte prestazioni è fondamentale sia per massimizzare le prestazioni che migliorare l'affidabilità delle vetture. In questo contesto, il presente elaborato illustra gli studi condotti in collaborazione con Dallara Automobili per ottimizzare i calcoli inerenti a tali sistemi. I sistemi di raffreddamento sono spesso analizzati tramite software 1D, in quanto offrono il vantaggio di analizzare tali sistemi in modo veloce ed affidabile. L’accuratezza delle simulazioni può essere incrementata grazie all’integrazione delle simulazioni 1D e 3D, in cui alcuni componenti sono modellati in ambiente 3D ma il resto del circuito in 1D, o tramite co-simulazioni, in cui diversi programmi sono usati per modellare parti differenti del circuito. L’obiettivo di questo progetto è quindi quello di studiare tali metodi, prendendo sotto analisi il sistema di raffreddamento di una hypercar. Nella simulazione 1D-3D, i radiatori olio-aria e acqua-aria sono stati modellati in 3D, permettendo di utilizzare i campi di moto dell’aria al radiatore che sono normalmente ottenuti tramite simulazioni CFD. I risultati di questa simulazione sono stati confrontati con i risultati di una simulazione interamente 1D. Successivamente, il circuito di un intercooler è stato studiato utilizzando simulazioni 1D-3D e 1D, confrontando i profili di temperatura all’uscita dell’intercooler delle simulazioni e della telemetria di pista. La parte finale del lavoro tratta la co-simulazione 1D-3D. Per fare ciò, un modello a ordini ridotto (ROM) è stato realizzato a partite da simulazioni CFD dell’intera vettura per ottenere il campo di moto all’ingresso dei radiatori in funzione della velocità dell’aria e della potenza termica scambiata, aggiungendo quindi un grado di complessità al caso precedente, in cui il campo di moto è scalato linearmente a diverse velocità a partire dall’unica distribuzione nota. La co-simulazione tra i software è stata possibile grazie allo standard functional mock-up interface (FMI). L’analisi, condotta con lo scopo di sviluppare una procedura e senza analizzare i risultati, è il primo passo importante verso un’integrazione 1D-3D completa per simulazioni di sistema più raffinate.
|
Abstract
In the field of high-performance vehicles, to predict the performances of cooling systems is fundamental to maximize the performances and to improve the reliability of the vehicle. In this context, this work presents all the analyses performed in collaboration with Dallara Automobili with the goal of optimizing the computations related to cooling systems. Such systems are often studied through 1D simulation tools, that offer the advantage of analysing the performance of a system in a quick and reliable manner.
The accuracy of the predictions can however be improved using 1D-3D integrated simulations, where some components are modeled in a 3D environment while the rest of the system in 1D, or through co-simulations, in which different software are used to model different parts of the circuit.
The goal of this project is therefore to study these different approaches considering the cooling system of a road-legal hypercar. In the integrated 1D-3D simulation, the oil to air and coolant to air radiators have been modeled in 3D, allowing therefore to use the air velocity distributions obtained through CFD simulations. The results of the simulation have been then compared to the results of the respective 1D simulation.
Then, an intercooler circuit has been studied using 1D and integrated 1D-3D simulations, comparing the charge air temperature profiles obtained from tests on the track to the results of the simulations.
The final part of the work was focused on the 1D-3D co-simulation. To achieve the target, a reduced order model (ROM) has been modeled starting from full-vehicle CFD simulations, to obtain the air velocity through the radiator as a function of the vehicle speed and the heat rejection of the radiator. This is an important addition with respect to the integrated 1D-3D simulations, where the air flow field is scaled linearly with the vehicle speed starting from the only available velocity distribution. The co-simulation between the 1D software and Twin Builder has been performed using the functional mock-up interface (FMI). The analysis, carried on the procedure level without analysing the results, is the first important step forward a full 1D-3D integration for more comprehensive and elaborate analyses of the cooling systems.
|