Riassunto analitico
La nanomedicina sta rivoluzionando alcuni settori medici apportando tecniche d’avanguardia e innovando terapie già vagliate. La sua poliedricità la rende promettente per l’applicazione in diversi campi, da quello oncologico ai vaccini e molti altri. La possibilità di utilizzare nanotecnologie nella cura della lesione del midollo spinale ha suscitato particolare interesse in quanto è una severa condizione clinica che affligge centinaia di migliaia di persone ogni anno. Le strategie terapeutiche attualmente in uso sono complesse, spesso invasive, e in molti casi comunque inefficaci. I laboratori Te.Far.Ti e Nanotech presso Unimore collaborano al progetto regionale Mat2Rep coordinato dalla fondazione IRET Onlus, con l’obbiettivo di identificare nuove cure basate sulle nanomedicine e i biomateriali, che possano innovare le terapie attualmente approvate in caso di danno tissutale. Studi hanno dimostrato come l’Ibuprofene possa avere un ruolo cruciale nella terapia della lesione spinale se ripetutamente somministrato nei primi momenti che seguono la lesione. La formulazione di Ibuprofene in un nanosistema iniettabile a rilascio modificato rappresenta quindi l’opportunità di sfruttare l’efficacia di questo farmaco riducendone il numero di somministrazioni. Studi precedenti riguardanti la formulazione di ibuprofene in nanosistemi hanno però incontrato difficoltà nel raggiungimento di un rilascio prolungato, probabilmente a causa della piccola dimensione della molecola. Pertanto, è stato sintetizzato un coniugato tra Ibuprofene e Paracetamolo, ipotizzando che il maggiore peso molecolare e la maggiore idrofobia del coniugato potessero portare a una migliore incapsulazione in nanosistemi e a un prolungamento del rilascio, associando attività antinfiammatorie di entrambi i farmaci. In questo studio è stata condotta l’ottimizzazione dei protocolli formulativi di nanoparticelle polimeriche e ibride, caricate con il coniugato tra ibuprofene e paracetamolo. Il protocollo in precedenza ottimizzato per ibuprofene è stato modificato in particolare nella composizione della matrice (utilizzando sia PLGA e PLA sia colesterolo) e nella percentuale di tensioattivo usato in formulazione. Le nanoparticelle ottenute sono poi state caratterizzate sia a livello chimico-fisico (dimensione, omogeneità, carica superficiale, morfologia), sia a livello tecnologico (efficienza d’incapsulazione, contenuto e resa ponderale): tutte le formulazioni hanno mostrato riproducibilità e omogeneità nei valori ottenuti con un miglioramento nell’efficienza di incapsulazione. Tre formulazioni sono state successivamente sottoposte a studi di rilascio della durata di due settimane e hanno mostrato un controllo nelle cinetiche di rilascio. Attualmente il coniugato è sottoposto a studi di attività in vitro e in vivo presso i partner del progetto a cui parallelamente si affiancheranno ottimizzazioni che consentano uno sviluppo ulteriore dei promettenti risultati ottenuti.
|
Abstract
Nanomedicine is revolutionizing many medical fields by innovating already used therapies and designing avant-garde techniques. Thanks to their versatile features, nanomedicines are finding their place in different areas such as oncology, vaccines, and many others, among which lately interest has risen around the possibility of using nanotechnology in spinal cord injury therapy. Spinal cord injury is a severe clinical condition that affects thousands of people every year: therapies currently used are complex, not easily accessible everywhere and in many cases not satisfactory to alleviate the patient’s suffering. Te.Far.Ti and Nanotech laboratories (UniMORE) are collaborating within the Mat2Rep project to identify a new effective therapy for spinal cord injury (SCI). Studies have shown that Ibuprofen could play an interesting role in SCI therapy if repeatedly administered right after the injury. Formulating Ibuprofen in an injectable nano system with a controlled release of the drug represents an opportunity to exploit the efficacy of an already known drug while reducing the number of administrations required. Previously, we formulated nanoparticles loaded with ibuprofen which suffered for low encapsulation efficiency with high drug wasting and encountered difficulties because release assay shows short term burst release, probably due to drug small size. Moving on, interest was diverted to a conjugate of Ibuprofen and Paracetamol with characteristics designed to improve these deficits, such as higher molecular weight and hydrophobicity.
The aim of this study was the optimization of polymeric and hybrid nanoparticles loaded with the Ibuprofen-Paracetamol conjugate specifically formulated for obtaining higher encapsulation efficiency and offer extended-release profiles while combining activities of both drugs. Formulative protocols previously optimized for Ibuprofen were modified in variables such as the nanosystem matrix, and surfactant used. The obtained nanoparticles were then physic-chemically characterized (size, PdI, and Z potential using photon correlation spectroscopy), and then technologically characterized (encapsulation efficiency, loading content and weigh yield using HPLC): all the formulations were reproducible and homogeneous, showing improvements in encapsulation efficiency. Two-weeks release studies were subsequently conducted, involving three among all the formulations obtained: both the polymeric and hybrid formulations showed a improved release kinetics.
Currently, Ibuprofen-Paracetamol conjugate biological activity mechanism is tested both in vitro and in vivo and NPs will be furtherly optimized and characterized to achieve further development of the already promising results.
|