Riassunto analitico
Il presente lavoro di tesi è centrato sullo studio della prima centrale termica ibrida a idrogeno installata in un edificio pubblico civile in Europa. In esso si pone il focus sull’analisi della configurazione impiantistica attraverso una simulazione del digital twin dell’impianto sul software Matlab Simulink. I risultati di produzione annuale su scala oraria ottenuti al termine di questa simulazione sono utilizzati come base per la valutazione di come l’investimento per una simile tipologia di impianto possa essere ottimizzato in funzione della percentuale di idrogeno presente nella miscela di combustibile. Si è poi definito il gap tra quanto economicamente sostenibile e l’onere attuale di investimento. L’elaborato è stato realizzato durante il tirocinio curriculare in Coopservice Soc.coop.p.A. La struttura della tesi può essere suddivisa in 3 campi di analisi. Il primo consiste nella definizione dei dati di input da inserire nel modello: viene calcolato il fabbisogno termico della porzione di edificio cui fa riferimento la nuova centrale termica, partendo da una modellazione architettonica dell’involucro edilizio su Autodesk Revit, si ricava il profilo orario di temperatura esterna annuale utilizzando dati storici dal 1991 al 2021, infine viene stimata la producibilità dell’impianto fotovoltaico da 100 kW installato sulla copertura del palazzetto attraverso il calcolatore SIMULARE 20.1. Nella seconda parte viene creato il digital twin della “centrale termica” su Matlab Simulink, con cui si ottiene una simulazione annuale del funzionamento del sistema, sulla base degli input e della logica di controllo e funzionamento, modellata sulle specifiche tecniche di impianto e le richieste dell’ente appaltante. In uno step successivo sono stati introdotti degli indicatori dimensionali per il serbatoio e la potenza dell’impianto fotovoltaico per ottimizzare e parametrizzare il costo dell’investimento iniziale in funzione della percentuale di idrogeno nella miscela combustibile destinata al generatore di calore. Il terzo ed ultimo campo d’analisi è sviluppato nell’ottica di delineare un’analisi di investimento in seguito all’ottimizzazione eseguita: attraverso i flussi finanziari su base annuale si stabilisce il punto di massima convenienza tecnico-economica nell’applicazione di un simile impianto con il calcolo del tempo di ritorno dell’investimento e del VAN. In parallelo viene posta l’attenzione anche sugli effetti positivi sull’ambiente che tale tecnologia produce. Lo studio mette a confronto due possibili configurazioni di impianto: la prima (SSP, scambio sul posto) prevede un bilancio, al termine del periodo di simulazione, tra l’energia prodotta dall’array fotovoltaico e quella utilizzata dalla centrale termica ibrida; la seconda (INS.) prevede un inseguimento di producibilità del fotovoltaico, che consiste nel fatto che gli elettrolizzatori entrino in funzione soltanto quando è disponibile energia elettrica green. L’obiettivo è quello di mostrare la possibilità tecnologica, anche nel settore civile, di riuscire a chiudere in maniera funzionale un ciclo di produzione e utilizzo dell’idrogeno in loco, per arrivare a proporre simili soluzioni impiantistiche in contesti residenziali di quartiere, facenti parte ad esempio di CER, in cui l’esubero di energia prodotta da fonte rinnovabile possa essere stoccata sotto forma di idrogeno, da immettere poi (con una certa percentuale) in volume nella rete di distribuzione di gas locale.
|
Abstract
This thesis work focuses on the study of the first hydrogen hybrid thermal power plant installed in a civil public building in Europe. It focuses on the analysis of the plant configuration by means of a simulation of the plant's digital twin on the Matlab Simulink software. The annual hourly production results obtained at the end of this simulation are used as a basis for evaluating how the investment for such a plant can be optimised according to the percentage of hydrogen in the fuel mix. The gap between what is economically viable and the current investment burden was then defined. The thesis was realised during the curricular internship at Coopservice Soc.coop.p.A.
The structure of the thesis can be divided into 3 fields of analysis. The first consists of the definition of the input data to be included in the model: the heat requirement of the portion of the building to which the new heating plant refers is calculated, starting from an architectural modelling of the building envelope on Autodesk Revit, the hourly profile of the annual outdoor temperature is obtained using historical data from 1991 to 2021, and finally the producibility of the 100 kW photovoltaic system installed on the roof of the building is estimated using the SIMULARE 20 calculator. In the second part, the digital twin of the 'thermal power plant' is created on Matlab Simulink, with which an annual simulation of the system operation is obtained, based on the inputs and the control and operation logic, modelled on the technical specifications of the plant and the requirements of the contracting authority. In a subsequent step, dimensional indicators were introduced for the tank and power of the photovoltaic system to optimise and parameterise the initial investment cost according to the percentage of hydrogen in the fuel mixture for the heat generator. The third and final field of analysis is developed with a view to outlining an investment analysis following the optimisation performed: through the financial flows on an annual basis, the point of maximum technical-economic profitability in the application of such a system is established with the calculation of the investment payback time and NPV. In parallel, attention is also paid to the positive environmental effects of such technology.
The study compares two possible plant configurations: the first (SSP, on-site exchange) envisages a balance, at the end of the simulation period, between the energy produced by the photovoltaic array and that used by the hybrid thermal power plant; the second (INS.) envisages a photovoltaic producibility tracking, whereby the electrolysers only come into operation when green electricity is available.
The aim is to show the technological possibility, even in the civil sector, of being able to functionally close a cycle of on-site hydrogen production and utilisation, in order to be able to propose similar plant solutions in neighbourhood residential contexts, e.g. part of CERs, in which the surplus energy produced from renewable sources can be stored in the form of hydrogen, which can then be fed (with a certain percentage) in volume into the local gas distribution network.
|