Tipo di tesi |
Tesi di laurea magistrale |
Autore |
LANDI, ROBERTO
|
URN |
etd-02142019-152423 |
Titolo |
Estensione e industrializzazione di modelli di reti generative applicati alla modellazione e previsione di serie temporali finanziarie. |
Titolo in inglese |
|
Struttura |
Dipartimento di Ingegneria "Enzo Ferrari" |
Corso di studi |
Ingegneria Informatica (D.M.270/04) |
Commissione |
Nome Commissario |
Qualifica |
CALDERARA SIMONE |
Primo relatore |
GRASSI DANIELE |
Secondo relatore |
|
Parole chiave |
- Deep Learning
- Finanza
- Gan
- Machine Learning
- Python
|
Data inizio appello |
2019-04-11 |
Disponibilità |
Accesso limitato: si può decidere quali file della tesi rendere accessibili. Disponibilità mixed (scegli questa opzione se vuoi rendere inaccessibili tutti i file della tesi o parte di essi) |
Data di rilascio | 2059-04-11 |
Riassunto analitico
La previsione del mercato azionario è da sempre un problema aperto nel mondo della finanza. In questa tesi viene proposto un modello, per la generazione di serie temporali finanziarie che fa uso della tecnologia GAN, Generative Adversarial Network. A partire dalla loro introduzione nel mondo del machine learning, le GAN hanno dimostrato la loro efficienza nella generazione di immagini e in altri lavori legati al mondo della visione artificiale, mentre sulle serie temporali pochi lavori sfruttano questa tecnologia, in particolare, non risultano in letteratura, lavori riguardanti la finanza. Per definizione, le GAN sono composte da due reti neurali che competono tra di loro. Nel modello proposto, per la parte di generazione degli scenari futuri, viene usato un modello sequence-to-sequence con relativo meccanismo di attention. Le sequenze generate, vengono fornite in ingresso a una seconda rete neurale che utilizzando layers convolutivi e un layer fully-connected finale ha il compito di determinare se una sequenza possa essere considerata come reale o come generata. Avendo un elevato numero di scenari vero-simili per una sequenza finanziaria data in ingresso, sarà possibile fare previsioni e studiare con maggiore semplicità l’andamento futuro dei prezzi azionari.
|
Abstract
|
File |
Nome file |
Dimensione |
Tempo di download stimato
(Ore:Minuti:Secondi) |
28.8 Modem |
56K Modem |
ISDN (64 Kb) |
ISDN (128 Kb) |
piu' di 128 Kb |
Ci sono 1 file
riservati su richiesta dell'autore.
|
Contatta l'autore
|
|