Riassunto analitico
Questa tesi ha ideato, progettato, implementato, sviluppato e testato un nuovo classificatore basato sul teorema di Bayes in grado di superare i vincoli e le limitazioni che caratterizzano i classificatori appoggiati su questo risultato matematico analizzandone le prestazioni per valutare eventuali possibilità di miglioramento. In particolare, gli obbiettivi raggiunti sono stati: • L’ideazione, la creazione e l’applicazione all’algoritmo di un insieme di soluzioni atte ad ampliare il contesto applicativo della famiglia di classificatori bayesiani rendendone la classificazione corretta e attendibile anche in presenza di casi limite. • L’ideazione, la creazione e l’applicazione all’algoritmo di un insieme di soluzioni atte a preservare il disaccoppiamento tra utente e classificatore che viene proposto dal classificatore bayesiano. • L’ideazione, la creazione e l’applicazione all’algoritmo di un sistema di feedback che in maniera automatica, sulla base dei dati, sia in grado di riconoscere quali campioni sono stati classificati in maniera attendibile e quali invece sono stati classificati pur presentando alcune incertezze circa la loro assegnazione alla classe. • La salvaguardia di buona parte dei vantaggi offerti dai classificatori di tipo bayesiano. • Il test e l’analisi dei risultati conseguiti attraverso la progettazione, l’implementazione e l’utilizzo delle soluzioni sopraelencate evidenziandone il confronto con alcune soluzioni esistenti.
|